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Abstract

In this study we discuss methods for solving random resistor networks and similar problems. We discuss the node
elimination method and we demonstrate its equivalence to the Gaussian elimination scheme, finding a good elimination
order, which makes the method highly efficient. The transfer matrix method is shown to be a special case of the node
elimination method with an ordering that is far from optimal. We compare the performance of these exact methods
with a state of the art conjugate gradient solver. In general, the node elimination method is the faster method.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A prime example of the study of disordered media is found in the random resistor network. Although
formalism, namely Ohm�s law and Kirchhoff�s transport laws, were known long before, one can safely say
that the use of computers started a new era in this field. Computer memory, being a scarce commodity at
the time, led to the excellent but limited algorithm presented in [1]. The only studied quantity was the equiv-
alent or global conductivity of the random resistor network, and therefore the network could be generated
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and evaluated at the same time without having to store much information in memory. A further restriction
was that the network needed to be at (or close to) the percolation threshold – if not, the memory would be
insufficient.

Later studies considered the whole current distribution in various networks. The set of transport equa-
tions needed to be solved and iterative solvers were the fashion in the late eighties. These are various imple-
mentations of the conjugate gradient method [2], but other schemes are also mentioned [3]. An efficient
competing algorithm appeared because the special substitution, known as Y–D or star–triangle transforma-
tion, was shown to be applicable to some particular two-dimensional networks [4]. The idea of this algorithm
has not been applicable to other networks. However, the Y–D transformation and its generalization can be
used in a different way. These transformations were indeed used at the percolation threshold [1,5], but both
papers state that the method is ‘‘unusable’’ when not near the percolation threshold. In particular, it is
claimed that the conjugate gradient would be more suitable in this case [5]. In this study we demonstrate that
exact methods based on substitutions can indeed compete with iterative solvers. Which method performs
best depends on the nature of the problem.

In physical terms these exact methods consist of doing physical substitutions, replacing physical elements
with equivalent physical elements. These substitutions and the substitution schemes that were used corre-
spond exactly to Gaussian elimination. This fact was to our knowledge not mentioned in [1,5] or similar
work. In this study we discuss this equivalence to some extent. Methods and ideas that applied mathema-
ticians have been studying in a purely theoretical fashion have direct physical interpretations when applied
to physical networks. Although we use the Gaussian elimination scheme as a theoretical basis, we describe
the implementation of the solver in terms of physics. This means that one can implement a close to optimal
Gaussian elimination for the networks without reverting to matrix formalism.

The need for a robust exact solver of random resistor networks does not only stem from the need to
study such networks in themselves. More complex networks can be studied with the same or only slightly
modified methods, that is to say networks that contain other passive elements or voltage sources. Such net-
works appear as models for other transport problems, for example fluid flow in porous media [6]. Another
example is the study of fracture using random fuse networks [7]. Both of these examples require solving the
transport equations over and over again. It will be shown, or outlined, how and when these problems can
be better attacked with the solver presented in this study than with iterative solvers.

The paper is organized as follows: Section 2 starts out with the efficient implementation of the node elim-
ination method, using physics and without an explicit use of matrix formalism. Thereafter, the equivalence
of this method with the well-known Gaussian elimination using matrix formalism is given. The section ends
with a discussion of the transfer-matrix method and its relation to the other methods. In Section 3 we discuss
a scheme or strategy for the node elimination picture. A performance comparison between transfer matrix,
optimized node elimination and the conjugate gradient method is given for different geometries and different
parameters in Section 4. Finally in Section 5, the flexible inclusion of boundary conditions in the node elim-
ination picture is discussed. In particular, we point out how certain applications, due to the required bound-
ary conditions, are far better off with elimination than with conjugate gradient.
2. The principles of the methods

The principles of the methods can be conceptually divided into two categories. Firstly, we consider
how the random resistor network can be solved by a substitution approach. The basic formulae are sum-
marized, and thereafter we show how to construct a forward and backward substitution scheme based on
these. Secondly, we address the order of substitution in Section 3. In order to make the algorithm work
efficiently, some further principles are needed. The choice of data structures for storage and loops is also
essential.
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2.1. The node elimination picture

In order not to complicate matters, we consider only normal resistors in the presented formalism, in
other words no inductors and capacitors. How to handle voltage sources will be discussed later together
with boundary conditions. A network of resistors can be characterized as a set of nodes with connections
between them. Each node is given an index, say i, and it is assigned a voltage Vi. Each connection between
nodes, say i and j, has a resistance denoted by Rij. In practice, it turns out that it is more convenient to work
with conductances, Gij = 1/Rij, instead of resistances. The nodes are either internal nodes or external nodes,
the latter being the nodes that are connected in some way to the surroundings, typically a voltage source or
a current source. In general, each external node has a certain voltage and an external current flowing out of
the node. It is required that one of the two quantities be specified as the boundary condition. The voltages
of the internal nodes are the unknown in the problem. They are found by solving Kirchhoff�s equations.
Consider a node, say 0, being connected to n neighbours, then Kirchhoff�s current law reads
Fig. 1
connec
equiva
Xn
i¼1

GiðV i � V 0Þ ¼
0; internal node;

I i; external node.

�
ð1Þ
If node 0 is an internal node, the solution with respect to the voltage V0 is
V 0 ¼
Pn

i¼1GiV iPn
i¼1Gi

. ð2Þ
In other words, given the voltages in all the neighbouring nodes, this formula finds the voltage V0. Now, we
want to make a change to the network without changing its properties with respect to the boundary
conditions. It is allowed to remove a node, say 0, from the system if all connections, already existing or
not, between the neighbours of node 0 are updated. The additional conductivity between node j and k is
DGjk ¼
G0jG0kPn

i¼1G0i
; ð3Þ
which is a generalization of star–triangle substitution [8]. Typically some of these connections were already
in existence, so that DGjk is added to their conductivity. However, many connections are not there and need
to be created. See Fig. 1 for an illustration of the removal process. The zeroth node is removed and DG�s are
added according to Eq. (3). Upon the removal of many nodes, the number of connections grows rapidly, see
Fig. 2.

Let us consider how the solution of the flow equations is found. Consider that we want to apply Kirch-
hoff�s laws to a network between a number of external nodes with predefined voltage (other boundary
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. (a) The state before removing node 0. (b) After removing node 0, its connections to its neighbours are removed, and new
tions are added between the neighbours. Already existing connections between the neighbours are updated. The network is
lent to (a), provided the additional conductivities be calculated from Eq. 3.



(a) step 0 (b) step 1 (c) step 2

Fig. 2. The figure shows three networks that are equivalent in the following sense. The eight points on the outside of the networks are
the same but the interior points and the connections between the points change. Consider (a) to be the initial network. When four
nodes are removed, connections are made (or updated) between the neighbours, and the network looks like (b). Removal of the middle
node in (b) creates (c). Note here that the process (a)–(b)–(c) is always allowed. The inverse process (c)–(b)–(a) is only allowed for
special values of the conductivities (e.g., when generated by the process (a)–(b)–(c)) and therefore of little use.

H.A. Knudsen, S. Fazekas / Journal of Computational Physics 211 (2006) 700–718 703
conditions will be discussed in Section 5). In that case, each of the internal nodes are removed in sequence,
always updating the network and its conductivities according to Eq. (3). This is the forward substitution
part, which terminates only when the external nodes with given voltage are left. In the special case where
the system has only two external nodes, there is only a single connection between them, which contains the
global conductivity of the whole system. For some investigations this would be the desired information but
more generally one would calculate backwards to find the solution for the voltage in each node. By means
of Eq. (2), the voltage division rule, one inserts the nodes in the inverse order. The other voltages in the
neighbouring nodes have already been calculated, so this is a straight-forward procedure.

In order to do this in practice one needs to index all nodes. Given an indexing of the nodes, the infor-
mation which needs to be stored to do the back substitution, is for each node the indices of the neighbours
and the respective conductivities at the time of removal. This implies that whatever other connections a
node had to other nodes that were removed before the node, this information is not needed to restore
the node. Therefore, it is not needed to store this information at any time in connection with the node.
In fact, all information is stored, but distributed among the nodes so that each node only keeps track of
the connections to nodes that are removed at a later time. Efficiency is increased in this way but it requires
the order in which the nodes are removed to be pre-defined. Ordering is discussed further in Section 3.1.

At some time a part of the storage structure may look like Fig. 3. The neighbours of node 15 are listed in
the first list. The numbers are the indices of the nodes, and the order in the list is the substitution order. If
we assume that node 15 is the next node to be removed, then this list contains all the neighbours of 15 at
that time. Were there other neighbours at an earlier time, then they do not need to be listed in the list of
node 15, since they were removed before 15. Now, consider one of the neighbours of 15, for example node
35. The list of this node is also shown. Some observations can be made by comparing the two lists. Nodes 7
15 3544 7 70 66

35 7 14 43 66 20 4

Fig. 3. The figure shows a sample of the storage structure. All numbers are node indices and thus these lists are the linked lists of
neighbours belonging to node 15 and 35. The order of the elements in the lists is in accordance with the substitution order, in other
words every element in the list corresponds to a node that will be removed before all the nodes that are listed later in the list.



704 H.A. Knudsen, S. Fazekas / Journal of Computational Physics 211 (2006) 700–718
and 66 are common neighbours. Node 70 is a neighbour of 15 but not yet a neighbour of 35. Nodes 14, 43,
20 and 4 are neighbours of 35 but not 15. Finally, node 44 is a neighbour of 15 but we do not know if it is a
neighbour of 35 because this node is removed before 35, and hence it is not listed in 35�s list (35 could
appear in the list of 44 though).

The removal of node 15 means running a double loop over all possible pairs of neighbours and updating
the conductances of respective connections in other lists. For instance, the connections between 35 and the
nodes which are listed after 35 in the list of 15 are all updates that need to be made in 35�s list. Algorith-
mically this means that the sublist 7-70-66 is merged with the list of 35. This is the key to making the method
work. Instead of spending time searching in for example a tree structure for each of N updates, requiring
OðN logðNÞÞ time, the merging of lists requires OðNÞ time. The pseudocode for the elimination is given in
Appendix A.

2.2. The Gaussian elimination picture

We now turn to the matrix formulation of the problem. In the node elimination picture, the use of Kir-
chhoff�s current law provides the necessary formulae for the forward and backward substitution, Eqs. (2)
and (3). Kirchhoff�s equations in Eq. (1) can be written in matrix form as
G~V ¼~I ; ð4Þ

where the voltage vector ~V contains unknown voltages and the current vector~I contains external currents
flowing out of the nodes. External means that they are not coming from any of the other nodes that are
considered a part of the network. As a consequence, most of its entries are zero and only points which
are externally connected, for example electrodes, have non-zero entries. The different possible boundary
conditions will be discussed in more detail in Section 5. In Eq. (4) we also introduce the conductivity matrix
G ¼
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Here, the diagonal elements are Si ¼
P

j6¼iGij. By construction the conductivity matrix is symmetric, since
the conductivity between two connected nodes is not dependent on the direction. The matrix is generally a
sparse matrix, because each node is only connected to its local neighbours, which is only a small number of
nodes, in comparison to the whole network.

To solve the equations in Eq. (4) by Gaussian elimination, one starts out by adding multiples of the
zeroth row to each of the other rows, such that all entries in the first column below S0 become zero. In other
words, to each element k of row i, the corresponding value in the zeroth row times Gi0/S0 is added;
DGik ¼ G0k
Gi0

S0

¼ G0iG0kP
j 6¼iG0j

. ð6Þ
This elimination of the zeroth column in the Gaussian elimination scheme is identical to elimination of the
first node in the node elimination picture. This follows from a direct comparison between Eqs. (3) and (6).
Further, the remaining sub-matrix of G, without the first row and column is still a symmetric matrix, whose
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rows and columns add up to zero. This corresponds exactly to the reduced physical network which appears
in the node elimination picture after removing one node. In conclusion, the two methods are identical.

Two remarks regarding the data storage structure follows. Since the matrix is always symmetric, it is
sufficient to store only half the matrix in memory, for instance the right upper part. The order of the equa-
tions in the matrix defines the order of elimination. Thus storing the right upper part, means storing in each
row the conductivity to all nodes that are to be eliminated at a later stage. This was the case for the rec-
ommended structure in the node elimination picture. Secondly, the matrix is, at least initially, rather sparse.
If there are few elements in a row it is preferable to store its elements in a linked list. This is the standard for
sparse matrix implementations of Gaussian elimination. Again, the physically derived storage structure has
a one-to-one correspondence to the optimal matrix representation for Gaussian elimination.

2.3. The transfer-matrix method

Before going into a more general discussion of finding the best order for the elimination process, we will
present the so-called transfer-matrix method [9,10]. In the literature this method has been considered dif-
ferent from the node elimination method but as we will show, these two methods are equal. That is to say,
the principle is equivalent, but the transfer-matrix method corresponds to one specific order of the elimi-
nation of the nodes.

Our presentation of the transfer-matrix method is in accordance with the work of Derrida et al. [9]. A
square random resistor network between two conducting bars is considered, see Fig. 4(a). The points on the
right-hand side, numbered from 1 to N, are boundary points, to which a given external current Ij can flow.
Each of these nodes has a potential Vj, which is dependent on the currents Ij. They are related through an
n · n conductivity matrix AL,
Fig. 4.
(a) the
inserte
the pre
Ij ¼
XN
k¼1
ðALÞjkUk. ð7Þ
No matter the size of the network to the left of the boundary points, its effect can always be reduced to this
type of a conductivity matrix. Probably the easiest explanation is that all the elements are linear, meaning
that any of the currents Ij must depend linearly on each of the voltages Uk. One can say that the entire net-
work, on the left-hand side of the boundary points is expressed in terms of an equivalent network. Each
pair of boundary points are connected through a resistor, whose value is the respective component of AL.
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In the transfer-matrix method the network is said to be built strip by strip, by adding resistor after resistor to the network. In
system is built until strip no. L. At this stage the conductance matrix is AL. In (b) one entire strip of nodes has been added. The
d horizontal and vertical resistors have resistance hi and vi respectively. At this point the conductance matrix AL + 1 is related to
vious one, AL. The illustrations, notation and sign conventions are in accordance with the work of Derrida et al. [9].
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One starts out with a simple network, for which the conductivity matrix is known. Thereafter, the net-
work is built strip by strip from left to right. Fig. 4(b) shows how the strip L + 1 is added to the system.
Horizontal resistors, hi are added to the respective rows and vertical resistor vi between the respective rows.
This new system has a conductance matrix AL + 1, which can be calculated from the previous matrix AL [9],
ALþ1 ¼ V þ ALð1þ HALÞ�1. ð8Þ

The matrix V includes all the added vertical resistors. Its definition is
V ij ¼ ½1=vi þ 1=vi�1�dij � ½1=vi�diþ1;j � ½1=vi�1�di�1;j. ð9Þ

The horizontal resistors are contained in the matrix H,
Hij ¼ hijdij. ð10Þ
Note that V dimensionally contains conductances, whereas H contains resistances. The technical reason for
this can be seen in Fig. 4(b). The vertical resistances v0 and vN + 1, above and below the system, are of
course not added physically. However, matrix V holds these values as well. A non-present bond is better
stored as zero conductance than as infinite resistance. In contrast, the two horizontal connections h1 and
hN are better stored as zero resistance in H than as infinite conductance.

Now the question arises, how does this method stand in relationship to the node elimination picture and
Gaussian elimination? After the strip L + 1 is added, the system contains 2N nodes. In other words there
are 2N Kirchhoff�s equations that we write in matrix form as
AL þ H�1 �H�1

�H�1 V þ H�1

 !
U

U 0

� �
¼

0

I 0

� �
. ð11Þ
This requires some explanation. The nodes are sorted in the following order: the nodes in column L are the
first 1 to N entries, and the nodes in column L + 1 are the entries N + 1 to 2N. Thus, the voltage vector
consists of the elements of U followed by U 0. The current vector�s first N entries are equal to zero; this
is because all points in column L are now the internal points of the network, or in other words no external
current flows into any of these nodes. For convenience we consider the values of h1 and hN to be non-zero
so that node 1 is distinct from node N + 1 and node N is distinct from node 2N. Further, it allows us to
construct the inverse of the matrix H, which is needed to represent to conductance values of the horizontal
bonds, without having to consider the upper and lower bar separately.

The conductance matrix in Eq. (11) consists of four N by N blocks. The upper right and lower left block
contain inter-connections between column L and L + 1, namely the diagonal matrix H�1. The lower right
block contains mainly vertical inter-connections within column L + 1, the matrix V. In addition, the diag-
onal elements in this block must be updated to meet the requirement that the sum of all entries within a
single row or column must be zero. Thus, this block becomes V + H�1. For the upper left block, the diag-
onal elements of the previous conductance matrix AL is updated similarly.

We want to solve this system of equations by Gaussian elimination. That is to say that the internal
nodes, or rather the first N rows of the matrix, are eliminated. First, we eliminate all entries in the lower
left block. Upon inspection one sees that by multiplying the upper blocks from the left with
H�1(AL + H�1)�1 and adding these to the lower blocks, this is accomplished. At the same time the lower
right block is updated to
V þ H�1 � H�1ðAL þ H�1Þ�1H�1. ð12Þ

By using the equality
ðAL þ H�1Þ�1 ¼ ðH�1½1þ HAL�Þ�1 ¼ ð1þ HALÞ�1H ; ð13Þ
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the block becomes
V þ H�1 � H�1ð1þ HALÞ�1. ð14Þ

Some further manipulations are
H�1 � H�1ð1þ HALÞ�1 ¼ H�1ð1� ½1þ HAL��1Þ ¼ H�1ð½1þ HAL� � 1Þð1þ HALÞ�1

¼ H�1HALð1þ HALÞ�1; ð15Þ
giving the final result
V þ ALð1þ HALÞ�1 ¼ ALþ1. ð16Þ

To actually arrive at the voltage in column L, one would have to do more work on the upper left block of
the matrix. However, if one is only interested in the relationship between U 0 and I 0, this information is
already contained in the lower right block, which can be correctly named AL + 1. One sees that the result
from [9], quoted in Eq. (8), is exactly the same result as the one obtained by Gaussian elimination. Hence,
the methods are equivalent.

The transfer matrix method can also be expressed in a slightly modified form [10]. The strips can be
added node by node instead of being added as one block. In actuality, it is the same as adding one node
and then removing another (the node that became an internal node). It has been argued that the transfer
matrix method is faster and easier when implemented in this way. This makes sense, numerically the Gauss-
ian elimination is also easier when performed row by row instead of by block. In conclusion, the transfer
matrix method is basically equal to node elimination, as long as the nodes are removed in sequence, column
after column. This ordering is not bad, in particular for long and narrow strips. However, the ordering is
not optimal; this is further discussed in the following section.
3. Elimination order

So far we have shown that the node elimination method and the transfer matrix method are equivalent
to Gaussian elimination. The transfer matrix method is special in that it corresponds to a particular order-
ing of the elimination. Node elimination can be accomplished in any order and the natural question is, what
is the best order?

Any physical network, in which the nodes are connected to their neighbours in space, gives rise to very
sparse conductance matrices. The reason is that initially the number of neighbours is much smaller than the
total number of nodes. The sparseness is exploited in the implementation. Only nonzero elements in the
linked list of each node need to be processed. To keep the processing time to a minimum, it is necessary
to keep the number of nonzero elements as low as possible upon elimination. In other words the so-called
fill-ins in the matrix must be kept to a minimum. The fill-ins in the Gaussian elimination picture correspond
to the newly added bonds in the node elimination picture when removing a node.

In principal, one can determine the optimal order of such an elimination process. The drawback is that
such an algorithm is NP-complete and therefore not very useful when the goal is to make fast solvers.
Heuristic methods which are based on graph theory exist and pretty good orders can be found with rather
simple algorithms [11,12]. The random resistor network is itself the graph corresponding to the problem, so
it need not be constructed from the matrix.

There are two bottom-up strategies worth mentioning. First, the so-called minimum degree ordering
scheme. At every point in the elimination process, the next node to be eliminated is the node that has
the smallest number of connections. It is likely that removal of this node will give a number of new con-
nections (fill-ins) that is close to the possible minimum. The second possibility is to check for the number
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of new connections and remove the node which creates the lowest number of such connections, the so-
called minimum local fill scheme. Extension of both these ideas is possible. Instead of considering the effect
of removing a single node, one determines the effect of removing a group of nodes. This is for example a
good strategy if the system contains some kind of clique of nodes, or in other words a group of nodes that is
strongly interconnected but which in total has very few connections to other parts of the network.

Top down strategies are also possible. The idea is to take a physical network (or more generally the gen-
erated graph) and subdivide the system. For instance one can first divide the system into two equally sized
regions. Care must be taken to define sets of nodes that make good boundaries between the regions. The
requirement, which must be met, is that every node inside a given region and not belonging to the boundary
is only connected to other internal nodes of this region or to the boundary of the region. After such a divi-
sion is found, the procedure can be repeated for each of the subregions, and so on recursively. The node
elimination order is found by starting at the lowest innermost level. The interior points of the smallest
regions are removed first. Thereafter, the remaining interior points of all the second smallest regions are
removed, and so on until all nodes are removed. For a random network some work is required to imple-
ment such a nested dissection. However, when dealing with regular networks, good subdivisions and order-
ings can be designed as the following special case illustrates.

3.1. Domain structure

Here, we consider a special case where the ordering of node elimination can be made optimal or very
close to optimal by way of direct construction. The system is a two-dimensional square tilted network.
A small section of the initial network would look like Fig. 2(a). Now, the first nodes to be eliminated
are every second row and column, as illustrated in Fig. 2(b). A larger portion of the network is shown
in Fig. 5(a). Here, only the boundaries are drawn. It is understood that every point on the boundary of each
domain is connected to every other point on the same boundary.

Larger domains are made, each from four smaller domains. When the centre nodes of these domains are
removed the remaining boundaries look like Fig. 5(b). Again, new domains are formed by joining four
smaller domains. The interior points are removed and the result is the domains shown in Fig. 5(c). In
the transition from Fig. 5(b) to (c), there are five internal points to be removed within each domain. By
applying the principle of keeping the number of connections as low as possible as long as possible, one sees
that there is an optimal order of removing these nodes. First, one removes the points (in this case only one)
that lay between the two upper subdomains. Then the points between the two lower subdomains are
(a) domain 1 (b) domain 2 (c) domain 3

Fig. 5. In a regular network, the elimination scheme is found by means of a hierarchical domain structure. By removing the inner
nodes of the domains on the lowest scale first and thereafter the inner nodes of the next scale and so on, the elimination process
becomes optimal or close to optimal.
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removed, and finally the horizontal line of remaining points. This procedure is easily generalized for larger
and larger domains. Finally the outer boundary is removed and the elimination process is finished.

This order of the elimination works well. How well it works still needs to be demonstrated and this is the
topic of the following section. The transfer matrix order and our suggested order will be tested against one
another and against a conjugate gradient iterative solver.
4. Comparison of the methods

4.1. The test setup

In order to compare the methods discussed in this study, we have chosen a rather simple and well-defined
system setup. A two-dimensional square tilted network of resistors between two conducting bars is used, see
Fig. 6(a). In this case the ordering scheme for the node elimination method is exactly as illustrated in Figs. 2
and 5, see the discussion in the related main text.

For convenience only, many of the chosen system sizes are powers of two. It makes the subdivision of the
system into domains simpler in terms of programming. Moreover, the repeated doubling of the system size
automatically creates data points which are evenly distributed on a logarithmic scale. In the cases where one
or more factors differ from two, the subdivision is still made according to the coarsening procedure, starting
as illustrated in Fig. 2. When approaching the system size, one reaches a point where one can no longer
simply join four and four domains, but one has to choose some other order. As long as the remaining do-
main numbers are small in at least one dimension, for example 3 · 3 or 1 · 16, we believe the ordering is still
quite close to optimal. As mentioned earlier, actually finding the optimal ordering is a very complex prob-
lem. For practical purposes it is more important to test the method with a good heuristic ordering than the
optimal, since heuristic orderings will be used in practice.

When comparing with the transfer matrix method, we have chosen to revert to the classic straight net-
work setup, see Fig. 6(b). We make sure that the work needed to be done to solve the equations corresponds
to the setup in Fig. 6(a). The number of nodes, i.e., equations, is the same. The distance between the bars is
the same, meaning that the number of nodes on a line or the number of resistors on a line (tilted in (a) and
straight in (b)) is also the same.

The conductance values are drawn at random. For the two exact methods, the choice of distribution of
these values is unimportant. However, the conjugate gradient method is quite sensitive to distribution. In all
(a) 8×4 tilted network (b) 8×8 straight network

Fig. 6. The main test setup is the square tilted system shown in (a). The basic unit of the system is taken to be the face centred square
unit. It follows that the horizontal times vertical length of (a) is Lx · Ly = 8 · 4. The transfer matrix method was first made for straight
networks, as shown in (b). In order to have the same number of nodes and the same number of connections between the upper and
lower bar, the corresponding straight system to (a) is the 8 · 8 system in (b).
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tests we let 50% of the conductances have unit value, i.e., G = 1. The other 50% is given a different value, for
example G = 10. To test the conjugate gradient method we use this second value of the conductances as a
parameter.

The two bars are given fixed voltage values. The lower bar is given zero voltage. The upper bar is given a
voltage proportional to the vertical length of the system. The idea is that independent of system, the average
voltage drop per row between the bars is unity. If one changes this convention it will slightly affect the con-
vergence time of the conjugate gradient. The idea is to be consistent.

All the test runs were done on a PC with an AMD Athlon(TM) 1.8 GHz CPU. The memory was 1 GB,
which was large enough for all programs to fit into it. Ten runnings were executed for each test, each with a
different random seed and the average execution times were calculated.

4.2. Square system

The required CPU time to solve the equations for a square network is investigated here. The system size
is varied from Lx · Ly = 16 · 16 to Lx · Ly = 512 · 512. Further, the distribution of the conductances is
varied. Three values for the second conductance are tested: 10, 1000 and 100,000. The difference between
the first value (being 1) and the second greatly influences the convergence time of conjugate gradient. There-
fore, how good or bad the conjugate gradient is may be heavily dependent on the problem at hand and its
parameters. In addition, a convergence criterion needs to be given. We have chosen two values for this so-
called �, namely �a = 10�12 and �b = 10�17. This number is the upper limit for the allowed square of error
per equation.

The results for the square network are presented in Fig. 7. First of all we note that node elimination
seems to be the better method for the entire system range investigated. However, the conjugate gradient
method is not much slower for the mixture of conductances G = 1 and G = 10. Clearly, the narrower
the conductance distribution becomes, the faster the conjugate gradient converges. Hence, there might very
well be applications with sufficiently nice coefficients (conductances), where the conjugate gradient is pref-
erable. On the other hand, there are also distributions where conjugate gradient is much slower than node
elimination.
16 32 64 128 256 512

L

10
-2.0

10
0.0

10
2.0

10
4.0

t(
s)

TM
NE
CG - 10
CG - 1000
CG - 100000

Fig. 7. The required CPU time for solving a square system Lx = Ly = L is shown. The legend means: TM = transfer matrix,
NE=node elimination and CG = conjugate gradient. In the case of conjugate gradient, two different convergence criteria were used:
dotted curves have � = 10�12 and dashed curves have � = 10�17. The numbers after CG refer to the second conductance value of the
connections, see main text.
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Regarding the effect of the convergence criterion �. This criterion greatly influences the accuracy with
which the equations are solved. It does not have a very strong impact on the CPU time needed to reach
the desired accuracy. At least in regards to these systems, one could say that the convergence tends to
be slow at the beginning of the iteration and faster towards the end.

There is a tendency that can be seen in Fig. 7. When increasing system size, the node elimination�s advan-
tage over conjugate gradient decreases. This is actually good news, because for larger systems there is in-
deed also a memory limit that might come into play. The necessary memory for a 512 square system is
already in the order of half a Giga-byte using node elimination. Conjugate gradient is very memory efficient
and can be employed for solving much larger systems.

Completing the discussion, we also include the result for the transfer matrix ordering of these square
systems. As expected this ordering is rather bad in this geometry. However, in the following subsection
we will see that it is better for very narrow but long strips.

4.3. Horizontal and vertical strips

Transfer matrix ordering has been considered very efficient when working with long and narrow strips.
This is true, but it is also true that the node elimination scheme based on hierarchical domain structure is
very good for strips. We test how good the methods are by direct comparison on horizontal strips. Four
different widths have been selected for the tests: Ly = 16, 32, 48 and 64. The length of the strips is varied
up to roughly Lx = 10,000.

We also compare with conjugate gradient. The distribution of conductances is taken to be 50% G = 1
and 50% G = 10. This is one of the distributions that was used in the square system case and it is the
one which led to better results for conjugate gradient. We think it presents a fair comparison between
the methods.

The over-all result, including all system widths, is that the node elimination scheme is the better method.
The shortest systems are so short that they are basically square. Here conjugate gradient is slower in the
same way as was shown before in Fig. 7. As the strips become longer, the difference between the methods
increases and then seems to saturate.

The most surprising result is that transfer matrix ordering is only able to compete with the other methods
when working with very narrow strips. At the width Ly = 16, Fig. 8(a), it is roughly as fast as the conjugate
gradient method but significantly slower than the node elimination scheme. For wider and wider strips, Fig.
8(b)–(d), transfer matrix ordering becomes less useful.

The fact that the conjugate gradient method seems to saturate at a constant factor slower than node
elimination with long strips can probably be understood in terms of the boundary conditions. When the
boundaries, the bars, are close to each other in this way the different sections of the long strip do not phys-
ically interact much. The solution in one section is rather independent of the solution in a section far away.
Thus, the need for information exchange over large distances along the strip in the iterative process is not so
great. This can explain why conjugate gradient still works well. In order to check this dependence on
boundary conditions, we have made a similar test with vertical strips.

Two widths have been chosen: Lx = 32, 64. Basically the systems are of the same size and shape as
the horizontal systems but the boundaries are further and further apart. This does not really alter the
results for node elimination as can be seen in Fig. 9. The results however for conjugate gradient are
very different from the horizontal setup. Using node elimination as a reference, one sees that with
the increasing height of the system conjugate gradient becomes slower and slower. No sign of saturation
is evident.

Knowing that conjugate gradient is very sensitive to boundary conditions, they become a factor that
should indeed be taken into consideration when choosing between these methods. If the boundaries are
far apart, the node elimination scheme is clearly better.
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Fig. 8. Horizontal strips of four different widths Ly. The legend means TM for transfer matrix ordering, NE for node elimination,
CGa for conjugate gradient with �a, and CGb for conjugate gradient with �b.
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Fig. 9. Vertical strips of two different widths. The legend is the same as in Fig. 8.
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5. Robust handling of boundary conditions

One of the aspects that should be taken into account when choosing between iterative solvers and exact
solvers is the handling of boundary conditions. In order to address this question properly, we first indicate
the general framework for solving such a system with boundary conditions. It is of some importance to
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clarify where the parameters of the problem enter, before discussing how this can be exploited in certain
applications.

Before the elimination, the system of equations can be written in matrix form as
Fig. 10
voltage
Ga Gb

Gc Gd

� �
V unknown

V known

� �
¼

Iknown
Iunknown

� �
; ð17Þ
where the G�s are sub-matrices and the V�s and I�s are vectors. All the nodes which have a predefined known
voltage are sorted at the end, that is to say the lower part. This lower set of equations contains unknown
external currents, which can be calculated in a straight-forward manner once all the voltages have been cal-
culated. Therefore, in practice, manipulations to the lower part of the system need not be performed. For
illustration we assume that these rows also were manipulated in the elimination process, giving the follow-
ing result:
G0a G0b
0 G0d

� �
V unknown

V known

� �
¼

I 0known
I 0unknown

� �
. ð18Þ
Here, the upper left block G0a is upper right triangular and the system is prepared for the back substitution.
In the simplest case, all the equations in the upper block belong to internal nodes. No external current is
applied to any of the nodes and the right-hand side becomes Iknown = 0. It follows that the updated right-
hand side I 0known is also zero. Since the resulting right-hand side is already known, no calculation time is
needed for its update.

In the more general case, where there are nodes with known external currents, their values enter into
Iknown. The order of the equations may be so that the first section of the Iknown vector contains only zeros.
In that case the elimination can be done until the first nonzero element appears in Iknown before one has to
worry about updating this vector, or in other words the right-hand side of the equations. However, generally
the vector is updated to I 0known. This update can be done at the same time as the manipulation of the left-hand
side of the matrix equation, which would be the normal procedure. Alternatively, it is possible to finish the
elimination of the left-hand side first and then calculate the updates of the right-hand side. For a single solu-
tion of the system of equations it does not make much sense but for some applications it is useful. The recal-
culation follows exactly the same scheme as the normal calculation, using the values of the already calculated
left-hand side. See Appendix A for the pseudocode of the whole elimination and for the recalculation only.

Either way, the calculation of I 0known is not a difficult point. An interesting remark that should be made at
this point concerns the possible presence of voltage sources within the network. This is illustrated in Fig.
10(a). In a connection between two nodes with conductance G, there is a voltage source with a voltage drop
E. Writing down the Kirchhoff�s current law for each of the nodes, one sees that the terms EG and �EG,
respectively, enter on the right-hand side of the equations. An equivalent network is shown in Fig. 10(b).
The voltage source is removed and two current sources are added. When the current sources send the
current ±Is = ±EG, then it is easily seen that the resulting equations are the same. In other words, any
configuration of voltage sources is reduced to a set of current sources and its treatment is like the treatment
of Iknown.
GE s
–Is G

(a) Voltage source (b) Equivalent current sources

I

. Any voltage source inside a network can be replaced by two current sources. The value of the current is Is = EG, where E is the
drop over the source in (a) and G is the conductance of the connection.
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5.1. Application to flow problems

Physical problems other than current transport in resistor networks obey similar transport laws. One
example is the modelling of fluid flow through porous media. Frequently, the medium is modelled as a net-
work of tubes in which the fluid flows. Each tube corresponds to a resistor having a certain mobility. Each
node has a pressure, which corresponds to the voltage in the electric current case. Furthermore, the coun-
terpart of electric current I is the volume flux Q. See Table 1 for a list of corresponding quantities. In order
to find the fluid flow, one applies the Kirchhoff�s equations in the same way as one would when solving for
electric current in a network.

Returning to mobility. Each tube�s mobility is based on two factors. One is the so-called permeability,
which is a geometrical property and which is usually fixed. The other factor is the viscosity of the fluid,
which in a given problem might show time dependence. Disregarding the time development and only look-
ing at an instantaneous solution of the flow equations, one has to solve the same flow problem as with elec-
tric current. Thus, the results of this paper apply also to the flow problem. We want to make a general
remark about the boundary conditions that appear in this problem.

In general, in flow simulations one does not want to provide a fixed pressure drop over a system (cor-
responding to a fixed voltage drop). Instead one wishes to solve for a constant volume flux through the
whole system, that is to say it is a global constraint. A special case occurs when one can define, for instance,
one of the end rows as a single point and connect to it a flux source with the desired flux. In cases like these
it is possible to apply this global boundary condition directly when using the conjugate gradient method for
solving the equations. It would also be possible if beforehand one knows the global conductance of the
whole system but that would require that one had already solved the problem. Generally for the global con-
straint on the flux, one has to give a fixed pressure drop and solve the equations. Afterwards the actual
global flow is calculated. By chance, it could be the desired flux. Normally it is not. Two solutions exist
in this case. One is to solve the flow equations twice for two different pressure drops. Based on the two solu-
tions one can calculate the solution with the desired global flux, see [6,13]. A different approach is to accept
some error in the global flux. That is to say that one is able to make a rather good guess on the global pres-
sure drop, such that the flux is close to the desired flux. In the case of a time development the guess for the
pressure drop needs to be updated. This approach is described in more detail in [14].

These problems concerning solving for constant flux are not really an issue for Gaussian elimination pro-
cedures. After the forward elimination is performed, both boundary conditions can be applied equally eas-
ily. In the simplest case when the flow is between two points, the value of the global conductance is known.
If the pressure drop is given, the global flow is calculated or vice versa. Should there be a global constraint
on the flux, then one has to apply two different voltage sources as with the conjugate gradient method. The
difference is that only the calculation of the right-hand side and the backward substitution need to be
performed twice. Therefore, the node elimination method has a clear advantage over conjugate gradient
methods for this class of flow simulations.

Flow simulations often deal with two immiscible fluids flowing in the system. Due to time development
the location of fluids changes, and thus each tube may contain different amounts of the two fluids at
Table 1
The table lists the corresponding variables of fluid flow within networks and electric current variables

Flow quantity Electric quantity

Pressure P Voltage V

Mobility M Conductance G

Capillary pressure Pc Voltage source E

Volume flux Q Current I

Both problems lead to the same kind of equations.
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different times. The fluids normally have different viscosities such that the mobilities in the system change
with time. Two fluids also imply the presence of interfaces between the two fluids. Interfaces imply inter-
facial tension, which means that at the location of the interfaces there are small pressure drops, so-called
capillary pressure. The analogue of such a pressure drop in current networks is the electro-motoric voltage
source. As already discussed, voltage sources are equivalent to current sources and they enter only in the
right-hand side of the equations.

A special case occurs when the two fluids actually have the same viscosity. In that case the mobilities are al-
ways equal, i.e., the left-hand side of the equations does not change with time. However, the location of the
interfacesmay changewith time, such that the right-handsideof the systemof equations also changeswith time.
Hence,when following sucha system through time, having to solve the same equationsover andover againwith
anewright-hand side, it is enough todo the forward substitutionof the left-handsideonce.Thereafter, for every
time step, the right-hand side is recalculated as described in the previous subsection and the entire backward
substitution is done. Knowing that the backward substitution is much faster than the forward substitution,
it is clear thatmuchCPU time can be saved. In the literature this problem is usually attackedwith the conjugate
gradient method, with which the whole system of equations needs to be solved from scratch every time.

A final situation for which the node elimination method is better than conjugate gradient is the simula-
tion of gas-liquid systems. The viscosity of gas and liquid can easily differ with as great a factor as 105. This
difference enters into the mobility values. As was seen in Section 4, the conjugate gradient method becomes
slower and slower when the coefficients in the equations vary over more and more orders of magnitude. In
fact, at some point the iterative scheme simply does not converge anymore. These systems which are unsolv-
able using this method can still be solved with the node elimination method. Clearly some precision is lost
when the coefficients vary so extremely, but still a good solution can be found.

5.2. Application to fracture models

Fracture has been modelled by means of random fuse models [7]. The system of equations is the same as
with the random resistor network. By letting the fuses burn out one after one, a time development resem-
bling a fracture process is achieved. Whenever a fuse burns out, its conductance becomes zero. This small
change in the network leads to a new current distribution that needs to be calculated from scratch.

If the fuse that burned out was connected to nodes that are eliminated at a late stage in the node elim-
ination procedure, then its burn-out only affects the latter part of the elimination. Thus, time can be saved
by only redoing a part of the elimination process. In order to exploit this possibility a very clever ordering
of the equations is needed. That is only possible if beforehand one is able to identify some regions in space,
in which the fuses will burn out first. By sorting these regions at the end of the elimination list, only a part
recalculation is needed as long as the changes to the network stay within these regions.

The presence of already burned out fuses forces neighbouring fuses to carry more current. Thus, the
chance that these neighbours burn out is larger than for the fuses which are further away. Therefore, in
some cases, it should be possible to identify regions in which new burn-outs will certainly take place.

The implementation might be somewhat tedious and we have not tried it ourselves. However, we think
the idea is promising. With the conjugate gradient solver this possibility does not exist. Much time could be
saved in a simulation if only part recalculations were needed in most time steps.
6. Conclusion

In this study we discuss methods for solving the linear transport equations that arise in physical net-
works, i.e., Kirchhoff�s laws. The methods are: the node elimination method, the transfer matrix method,
the Gaussian elimination and the conjugate gradient iterative solver.
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In physics, the node elimination method, the transfer matrix method and Gaussian elimination are often
considered different methods. However, we show that this is not the case. Although the perspectives are
different, the actual operations or calculations which are done in both the node elimination method and
in the transfer matrix method are the same as in the Gaussian elimination scheme. With emphasis on
the node elimination method, we discuss an implementation that avoids matrix storage structures. Instead
the use of linked lists and clever orderings make the method efficient. This corresponds to the sparse matrix
implementation of Gaussian elimination.

Furthermore, ideas which have been developed in applied mathematics and graph theory but have been
little known to physicists are also discussed. The concept of domains and subdomains makes it possible to
generate a rather good and close to optimal ordering of the elimination process. This is the key reason the
node elimination method works so well.

We have performed tests which directly compare the node elimination method with the conjugate gra-
dient method on some sample systems. The general result is that the node elimination method is faster.
However, there are many parameters which play a role. Tests on square networks of size 16 · 16 to
512 · 512 show that node elimination is faster independent of system size in this range. The stiffness of
the equations is a key factor here. The conjugate gradient method is very sensitive to the distribution of
the coefficients of the problem. It was shown that when the coefficients do not vary much (say within
one order of magnitude), then the difference between the methods is minimal. On the other hand, when
the coefficients vary with several orders of magnitude, the node elimination method is more than an order
of magnitude faster than the conjugate gradient method.

Tests on longer horizontal or vertical strips confirm these findings. Node elimination can in all cases
compete well with the conjugate gradient method. Whereas node elimination is rather insensitive to bound-
ary conditions, conjugate gradient is not. For the horizontal strip, where the boundaries are close together,
the node elimination method is slightly faster and the methods seem to scale equally with length. For ver-
tical strips, where the boundaries are far apart, the conjugate gradient method is much slower and it scaled
much worse with size as was the case for horizontal strips.

The transfer matrix method, which was shown to be a special case of the node elimination method, the
elimination being done in one specific order, was also tested on the horizontal strips. It has been the common
opinion that this method is well suited for long strips. We find that this is only true for very narrow strips.
The node elimination method with domain based ordering is faster than transfer matrix ordering in all cases.

In conclusion, the node elimination method is the better method if a good ordering can be found based
on division into domains and subdomains, the coefficients (the conductances) vary over more than one or-
der of magnitude, and for strips in any direction. Furthermore, in some application, for example flow net-
works, node elimination can be much better combined with the boundary conditions of the problem,
possibly avoiding recalculations that would be necessary with the conjugate gradient method. The weakness
of the method is the large memory consumption. Thus, very large systems still need to be solved with con-
jugate gradient or similar methods since they are very memory efficient. If, from the outset, the topology
makes it difficult to create sensible domains, the conjugate gradient method may also be preferable.
Appendix A. Algorithm pseudocodes

A.1. Forward elimination

It is supposed that there are n nodes. The nodes are numbered from 1 to n. Each node (e.g., node i) has
an associated list of links (list[i]). Each link in list[i], except for the head element (list[i].head), represents a
connection between node i and a node with a higher index. The inverse connections are not stored because
of symmetry. This means that list[n] contains only the head element. The links (e.g., Lij) store a triplet
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composed of a conductivity value (Lij.g), the index of the connected node (Lij.ind) and a reference to the
next link in the list (Lij.next). The conductivity value stored in the head element of list[i] should be the
sum of the conductivities of all the connections of node i.

It is supposed further that the external currents I[i] are given, and that their sum is zero (i.e.,Pn
i¼1I ½i� ¼ 0). After the node elimination step the conductivity values stored in the head elements should

be the sum of the conductivities of the other elements in the same list. Consequently the conductivity values
stored in the head of the last list (i.e., list[n].head.g) should be zero. Similarly I[n] should be zero, meaning
that the voltage on the last node can be chosen freely.
1:
 for i 1 to n � 1

2:
 Lii list[i].head

3:
 Lij Lii.next

4:
 while Lij 6¼ NIL

5:
 j Lij.ind

6:
 gRatio Lij.g/Lii.g

7:
 Ljj list[j].head

8:
 Ljj.g Ljj.g�gRatio*Lij.g

9:
 Lik Lij.next
10:
 L0jk; Ljk  Ljj; Ljj.next

11:
 while Lik 6¼ NIL

12:
 k Lik.ind

13:
 gComp gRatio*Lik.g

14:
 while Ljk 6¼ NIL and Ljk.ind<k

15:
 L0jk ; Ljk  Ljk; Ljk.next

16:
 if Ljk 6¼ NIL and Ljk.ind = k
17:
 Ljk.g Ljk.g + gComp
18:
 else
19:
 L0jk .next  newLinkðg; ind; next gComp; k; LjkÞ

20:
 L0jk  L0jk.next

21:
 Lik Lik.next

22:
 I[j] I[j] + gRatio*I[i]

23:
 Lij Lij.next
A.2. Backward substitution

The calculated voltage of node i will be stored in V[i]. The voltage of the last node (i.e., V[n]) can be
choosen arbitrarily as a reference value. Isolated nodes will have undefined voltages.
1:
 for i n � 1 downto 1

2:
 Lii list[i].head

3:
 Lij Lii.next

4:
 if Lij 6¼ NIL

5:
 iSum �I[i]

6:
 while Lij 6¼ NIL

7:
 j Lij.ind

8:
 iSum iSum + Lij.g*V[j]
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9:
 Lij Lij.next

10:
 V[i] iSum/Lii.g

11:
 else

12:
 V[i] undefined
A.3. Recalculation of the right-hand side

In the recalculation of the right-hand side, one can make use of the fact that some external currents may
be zero, avoiding a loop and a number of calculation steps.
1:
 for i 1 to n�1

2:
 if I[i] 6¼ 0

3:
 Lii list[i].head

4:
 Lij Lii.next

5:
 while Lij 6¼ NIL

6:
 j Lij.ind

7:
 gRatio Lij.g/Lii.g

8:
 I[j] I[j] + gRatio*I[i]

9:
 Lij Lij.next
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